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Abstract

A new technique for significantly reducing the
computation time of time domain field simu-
lations using modern digital signal processing
techniques is presented. The procedure leads
to a simple model of the investigated structure
in form of a digital filter. As an example the
method is applied to a TLM simulation of a
resonant cavity.

Introduction

Due to the simple theoretical basis and the great flexi-
bility time domain methods as e.g. the TLM method
(Transmission-Line Matrix) [1] and the FDTD method
(Finite Difference Time-Domain) [2] get more import-
ance. However, the amount of CPU time and memory
required is excessive.

The present paper shows that it is possible to re-
duce the number of time steps by a factor of 20 up
to 64 for eigenvalue problems using the TLM simu-
lation associated with the System Identification (SI)
method [3, 4]. The SI-method is able to determine a
model of the microwave structure from a short obser-
vation intervall of the input and output data of the
time domain simulation. Nearly arbitrarily long out-
put signals can be calculated in a very short time by
using this model which is a simple digital filter.

Theory

The TLM and FDTD meshes can be interpreted as
high order digital filters with accessible input and out-
put signals (z(2), y(¢)).

The delay time tg of the original system is repre-
sented by a delay line of the order ({5 —1) in the model
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Figure 1: System identification with prediction error
filter and a delay line

(Fig. 1). The remaining part is approximated by a di-
gital filter of the order N which is determined with
the SI-method. The input signals of this approach are
z4(t) = z(t — to + 1) and y(t). Usually the identifica-
tion problem is solved by predicting the output of the
system from previous samples of the input and output
signal of the original system (Fig. 1):

N N
§t) =D —ci(t)-za(t =)+ Y ~bi(t) - y(t - 4). (1)
=0 =1

In the above equation §(t) is the prediction of the
original signal y(t). The prediction error is defined by:
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e(t) = y(t) — ¥(1)- (2)
The basic problem of fitting the model to the input
datais to find a set of predictor coefficients (¢i(t), bi(t)

with ¢ = 0,...,N) that will minimize the sum of squa-
red prediction errors (least-squares (LS) prediction):

L-1

Z e(t—n)-e(t —n) = e(t)-e(t) = min.

n=0

(3)

e(t) is the vector of past observations of e(t)
weighted with a rectangular window of the lenght L:

e(t) = (e(t)v e(t - 1)a tt e(t -L+ 1))T' (4)

The adaptive prediction error filter (Fig. 1) is cal-
culated with the first splitted generalized LeRoux-
Gueguen Ladder algorithm for vectorial signals [4]
which is based on the covariance and cross covariance
matrix of z4(t) and y(t). The algorithm belongs
to the class of pure order recursive ladder algorithm
(PORLA) and leads to the exact LS-ladder form [5, 6]
of the prediction error filter that minimizes the sum
of squared prediction errors (eq. (3)). The generalized
vectorial Levinson recursion [5] is used to compute the
transversal form of the prediction error filter shown in
figure 1 from the ladder form. The coeflicients ¢;(t)
and b;(t) are time-dependent and converge relatively
fast to the true parameters.

The application of the SI-method to a TLM simu-
lation is described in the following points:
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Figure 2: Model system of the microwave structure
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First the time domain method is started to cal-
culate y(t) as a reaction of z(¢).

. The delay time g is defined when the first value
of y(t) is not equal to zero.

. Now the SI-method is started which operates in
synchronism with the field simulator.

. The field simulator and the SI-method are stop-
ped at the time t = t; if the variation of the co-
efficients (c¢;(t),b;(t)) is negligible and the error
e(t) is small enough.

. Using the prediction error filter with the coeffi-
cients (¢;(t1),bi(t1)) at the time step ¢; the mo-
del shown in figure 2 is determined. Pm(t) can
be calculated for nearly arbitrary long time by
exiting the model with z(t). The knowledge of
the original output signal y(¢) is not necessary
here.

. }”,\n(w) or the frequency response f (w) can be
computed from §,(t).

Results

To demonstrate the function and the efficiency the SI-
method is applied to a TLM simulation of a resonant
cavity [7]. The field of the investigated structure was
simulated using a mesh of 288 nodes over 16384 time
steps. To observe y(t) the mesh was exited with Di-
rac’s delta function z(¢) = 6(¢) (eigenvalue analysis).

The time domain simulation results are processed
by the method described above. The delay time is
to="T1.

If the filter order is chosen to N = 40 the error e(?)
is relatively small compared to y(t) which indicates a
good prediction (Fig. 3). After about 200 time steps
the coefficients of the filter are nearly constant (Fig. 4).
A comparison of the original spectrum Y (w) (Fig. 5)
with the estimated one fn(w) (Fig. 6) shows that the
frequency of the three significant eigenvalues of the
original spectrum are predicted quite good (see also
table 1). A filter order much smaller than N = 40
yields to inaccurate results.

With a filter order of N = 70 the error e(t) can be
reduced significantly. As shown in figure 7 and table 1
the agreement of the frequency response ¥, (w) to the
original one is excellent. The resonant frequencies can
be calculated exactly and the amplitude with a small
error. To determine the filter coefficients 500...1000



| N || L.eigenvalue | 2.cigenvalue | 3.eigenvalue |

40 [| 0 Af 1 Af 13 Af
70 || 0 Af 0 Af 0 Af

Table 1: Comparison of the eigenvalues: Deviation
of the resonant frequency in Af = 2713f,,, =
61.035MH 2
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Figure 3: Original output signal y(¢) and prediction
error e(t)

20.0
15.0

10.0

5.0 T T T T T e T o TE Gt RS i et T i Gt

obd
0.0
-5.0 3

!
-10.0 1
!
L)
I

coefficients —

-15.0

-20.04 100 200 300 200 500

timesteps —

Figure 4: Several filter coefficients b;(¢) with ¢ =
4,5,6,7
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Figure 5: Original output spectrum Y (w). The am-
plitude is normalized to the maximum of the electric
field Ey maz-
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Figure 6: Estimated output spectrum )/’,\n(w) with
N = 40. The amplitude is normalized to the maxi-
mum Ejy ., of the original spectrum.
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Figure 7: Estimated output spectrum l’/;(w) with
N = 70. The amplitude is normalized to the maxi-
mum Ey 4, of the original spectrum.



time steps are necessary. An increase of the based
information lead to a more accurate estimation of the
spectrum.

Conclusions

In the present paper the digital signal processing
of time-domain simulation results by using the SI-
method was introduced first. The computation time
of time domain simulations of eigenvalue problems can
be reduced by a factor of 20 (for N = 70) to 64 (for
N = 40).

In the literature [8, 9, 10] only the Prony-Pisarenko
method is known to reduce the number of required
time steps of time-domain simulations. In [8] the over-
all CPU time is reduced by a factor of 2 to 3.

It is expected that the SI-method can easily be
adapted to the application of transient analysis with
e.g. the FDTD method [2). Furthermore a model of
the investigated structure is determined which might
be useful for time-domain circuit analysis. Thus the
SI-method is a new powerful tool for modern time-
domain simulations and seems to be superiour com-
pared to the Prony-Pisarenko method.
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